Analysis on Pseudo-steady Indentation Creep
نویسندگان
چکیده
Theoretical analysis and finite element (FE) simulation have been carried out for a constant specific load rate (CSLR) indentation creep test. Analytical results indicate that both the representative stress and the indentation strain rate become constant after a transient period. Moreover, the FE simulation reveals that both the contours of equivalent stress and equivalent plastic strain rate underneath the indenter evolve with geometrical self-similarity. This suggests that pseudo-steady indentation creep occurs in the region beneath the indenter. The representative points in the region are defined as the ones with the equivalent stress equal to the representative stress. In addition, it is revealed that the proportionality between indentation strain rate and equivalent plastic strain rate holds at the representative points during the pseudo-steady indentation creep of a power law material. A control volume (CV) beneath the indenter, which governs the indenter velocity, is identified. The size of the CV at the indented surface is approximately 2.5 times the size of the impression. The stress exponent for creep can be obtained from the pseudosteady indentation creep data. These results demonstrate that the CSLR testing technique can be used to evaluate creep parameters with the same accuracy as conventional uniaxial creep tests.
منابع مشابه
Prediction of the Constitutive Equation for Uniaxial Creep of a Power-Law Material through Instrumented Microindentation Testing and Modeling
Indentation creep tests and finite element simulations were performed on a model material to show that the constitutive equation for conventional uniaxial creep can be derived using the instrumented indentation testing technique. When the indentation pressure and the indentation creep rate are maintained at constant values of ps and _ 3⁄4inðsÞ, respectively, the contours of the equivalent stres...
متن کاملInvestigation of indentation derived creep response using constant load and constant strain rate methods
Time dependent plastic deformation in metals can occur at high temperatures. Typically the creep test is conducted to characterize the deformation features; however, the conventional uniaxial power-law creep test may be impractical for small scale materials. Accordingly, instrumented indentation techniques are frequently employed. This study concerns the employment of instrumented indentation t...
متن کاملIndentation vs. Uniaxial Power-law Creep of Sn-based Solder Material: A Numerical Assessment
It is crucial to understand the creep behavior of Pb-free solder alloys in electronic packaging. Typical service environments are between 298 and 373K. The thermal mismatch induced stresses acting on solder joints result in extensive rate-dependent plastic deformation. The solder alloy is potentially the weakest component in the electronic package because normal operating temperatures are alrea...
متن کاملA Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments
Introduction: Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and espe...
متن کاملExperimental and computational creep characterization of Al–Mg solid-solution alloy through instrumented indentation
Carefully designed indentation creep experiments and detailed finite-element computations were carried out in order to establish a robust and systematic method to extract creep properties accurately during indentation creep tests. Samples made from an Al–5.3mol%Mg solid-solution alloy were tested at temperatures ranging from 573 to 773K. Finite-element simulations confirmed that, for a power-la...
متن کامل